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Abstract

Predicting the spread of wildfires day over day is cru-
cial for disaster preparedness and for planning emergency
services responses. We approach the problem of wildfire
spread prediction by implementing different computer vi-
sion models, such as convolutional auto encoders and vi-
sion transformers, and applying them to a large multivari-
ate dataset curated for this task. We analyze the models to
identify features that carry significant predictive power to
identify areas of critical interest when dealing with wild-
fires. Despite the expressive power of these architectures,
our models underperform relative to a baseline convolu-
tional autoencoder previously proposed for this task, high-
lighting the difficulty of learning from real-world spatial
data.

1. Introduction

The ever increasing frequency and intensity of wildfires,
driven by global climate change, are an important environ-
mental challenge in the modern era. Accurate and timely
prediction of how a wildfire will spread day by day is crit-
ical for effective management by local authorities. Accu-
rate predictions would enable authorities to efficiently al-
locate limited resources for fire fighting as well as poten-
tially coordinating evacuations of people living in affected
areas. Predicting the spread of a wildfire is a complicated
prediction task influenced by a number of climatological
and topographic features associated with the area around a
fire, making this a task suitable for end-to-end deep learning
computer vision models.

In this paper, we investigate the performance of several
different models on the task of wildfire spread prediction,
including convolutional auto encoders (CAEs) such as U-
Nets which combine high level learned representations with
fine grained local features, and visual transformers (ViTs)
which capture global context from images through attend-
ing across patches. After benchmarking the different mod-
els, we also perform feature analyses on the trained models
in order to identify which features have the most predic-
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tive power and if there are specific patterns that are highly
influential in predicting wildfire spread. We will look at
model-agnostic feature analysis methods such as gradient
based saliency maps as well as model specific methods like
Class Activation Mappings (CAM) for CNNs and attention
rollout for ViTs. We provide human-comprehensible inter-
pretations of high importance features to identify high risk
landscape features.

1.1. Problem Statement

The problem we are trying to solve is image segmen-
tation over a high-dimensional input image. Given a
64x64x12 input image, which represent information about
the landscape around an active fire (including a mask of the
current fire), the goal is to produce a 64x64x1 map where
for each pixel (representing a portion of the landscape) we
predict the probability that the fire will spread to that area in
the next day. Some ground truth masks contain ‘unknown’
pixel labels which are discarded during loss computations
and evaluation for that example.

2. Related Work

There is a significant amount of prior technical methods
that are related to our work, including model architectures
for segmentation and post-hoc feature analysis. There has
also been a significant body of work related to wildfire pre-
diction since Huot et al released their dataset in 2022 [11].
These can be largely grouped into two categories: technical
methods and dataset expansions / alterations.

2.1. Related Technical Methods

There is a large variety of model architectures that have
been designed for semantic segmentation in computer vi-
sion. One popular such architecture is a UNet [17]], which
can be thought of as an encoder-decoder model with resid-
ual connections to preserve finegrained detail. We discuss
this model more later in this paper. A similar model is the
Convolutional Auto Encoder (CAE), which uses convolu-
tional downsampling followed by upsampling, but without
residual connections [6]. This is the model used by Huot et
al.



More recently, transformer based architectures for se-
mantic segmentation have been quite popular, achieving the
state of the art on many benchmarks, including the wildfire
prediction dataset we are studying. One such popular model
is the SegFormer, which combines hierarchical encodings
with MiT-BO transformer-based attention blocks with fea-
ture level information similar to a UNet. We discuss this
model more in future sections of the paper. A significant
recent advancement in this field has been the FuseFormer
[[14]. The FuseFormer is specifically designed for high di-
mensional data such as the spatial data present in the wild-
fire dataset. It uses custom fusion blocks efficiently fuse a
large number of homogeneous modalities as well as a novel
transformer decoder architecture to recover pixel level seg-
mentation predictions. The authors report 43.5 precision,
48.8 recall, and 39.0 F1 score, the current state of the art for
the wildfire spread prediction benchmark.

There is also a significant body of work on interpreting
and analyzing trained models. We are particularly interested
in this paper in broadly applicable gradient based methods,
which highlight areas of the input that carry strong predic-
tive signal for any model. We rely on two such methods,
Smoothgrad [19] and Grad-CAM [[18]], both of which we
discuss in more detail later.

2.2. Related Data Works

There has been a significant amount of work by people
in constructing similar datasets for tasks related to wildfire
prediction, such as fusing spatial information for wildfire
prediction in Morocco [[12], collecting more granular data
[4], relaxing the task to binary classification of whether
there will be a fire the next day [l12], and constructing newer
similar datasets from SENTINEL satellite imagery [23].
These new datasets provide a wide range of benchmarks
for training computer vision models on highly complicated,
real world data.

3. Methods
3.1. Models

In this section, we describe the technical details of the
U-Net model and Vision Transformer model that we trained
for this task.

U-Nets, introduced by Ronneberger et al in 2015 [17],
is a convolutional neural network architecture specifically
designed for image segmentation tasks. This model archi-
tecture consists of two parts: an encoder pass which down-
samples the image into an abstract representation through
sequential convolutional and pooling layers, followed by
a decoder which upsamples the encoded image represen-
tation by concatenating with residual connections from the
encoder pass and then passing that through inverse convo-
lutional layers until the original image resolution is recov-

ered. The high level idea of the model is to combine fine
grained features with high level abstract representations to
combine semantic/abstract understanding with detailed lo-
cation information, both of which are important for image
segmentation.

SegFormers, introduced by Xie et al in 2021 [22], is a
vision transformer architecture that is specifically designed
for image segmentation tasks and shares some conceptual
similarities with U-Nets. The model architecture consists
again of two parts: an encoder pass which consists of 4
stages of mix transformer encodings which downsample the
original input into a higher level, abstract representation,
followed by a decoder which projects all of the different en-
coder stage outputs to a common shape, concatenates them,
and then passes them through a simple MLP segmentation
head to produce the final predictions. The mix transformer
stages of the encoder differ from the typical vision trans-
former layers in that the patches overlap, encouraging con-
tinuity/smoothness between adjacent patches. Because of
this, these stages forego the positional encodings that are
typically used by vision transformers, instead relying on the
spatial continuity of overlapping adjacent patches, similar
to a convolutional neural network. The authors also im-
plement an efficient self attention mechanism that reduces
runtime from O(n?) to O("—Rz), where R is a chosen reduc-
tion factor (ranging from 64 to 1 throughout the different
encoder stages). We forego this in our model because our
images are low resolution, so this is not a significant im-
provement in our use case. This architecture is similar to
the concept of U-Nets in that both start with an encoder pass
to extract high level semantic information and concatenate
many layers of the encoder during the decoder phase.

3.2. Feature Analysis

In this section, we will describe the different methods
we will use for feature analysis. Primarily, we will focus on
gradient based methods.

Gradient methods for feature analysis are architecture-
agnostic methods (so long as the architecture is differen-
tiable) for interpreting the predictions of neural network
classifiers. These methods compute the gradient of the out-
put with respect to the input via backpropagation which pro-
duces a saliency map indicating how sensitive the model’s
predictions are to each individual input pixel. Input fea-
tures with larger gradients can be interpreted as having high
influence or predictive power in the model. Typically, gra-
dients are gated to only positive values to indicate inputs
are supporting the final prediction. For segmentation tasks
like ours, we compute the gradient with respect to all pix-
els where the model predicted the positive class (eg ‘fire’)
and aggregate those into a single attribution saliency map.
In our project, we implement SmoothGrad, introduced by
Smilkov et al in 2017 [[19]. SmoothGrad addresses the issue



of high variance in the gradient maps by computing saliency
maps for many perturbed versions of the input and averag-
ing them to a single saliency map. The inputs are perturbed
by adding gaussian noise, with a standard deviation of 15%
of the range of input values.

We also investigate Grad-CAM, introduced in 2016 by
Selvaraju et al [[18]], which is a spatial feature attribution
method for analyzing convolutional networks. This method
works by computing the importance of each feature dimen-
sion/channel by taking the average gradient, and sum over
the channels weighted by their average gradient. This is
useful to identify locations in the image (a subset of the
land) which is important to the class predictions without
breaking it down by each feature. In the context of our task,
this simply identifies areas of interest to the fire prediction
without identifying why they are important (e.g., some fea-
ture in elevation, or the amount of precipitation).

4. Dataset and Features

In this paper, we work with the Next Day Wildfire Spread
dataset introduced by Huot et al in 2021 [[11]. This dataset
contains multidimensional information about 64 kilometer
by 64 kilometer patches of land area in which a fire oc-
curred on a specific day. The data includes a mask of the
fire’s spread on a specific day as well as many explana-
tory/informational features such as elevation maps, wind
speed and direction, temperatures, humidity, precipitation,
drought index, vegetation, population density, and energy
release component. This data is combined into 64x64x12
images, along with ground truth results about the next day’s
wildfire spread. This naturally induces an image segmenta-
tion task where a model predicts the next day’s fire spread
from the features provided.

The dataset contains 18445 64x64x12 images, each of
which represents a 64 kilometer by 64 kilometer region in
which there is an active fire. This is a low resolution repre-
sentation, as each pixel represents a 1 square kilometer area
in real life. See figure [I] for examples of images, broken
down by feature. The fire masks are grey in areas with no
fire, red in areas with a fire, and dark grey in unknown areas
(these are discarded during loss computation).

This dataset collates domain relevant feature information
from a number of different sources: historic wildfire data
from the MOD14A1 dataset from the Google Earth Engine
project [7], topographic information from the Shuttle Radar
Topography Mission [13]], weather and drought data from
the GRIDMET project [1] [2]], vegetation information from
the NASA VIIRS project [3]], and population density infor-
mation from GPWv4 [3]].

5. Experiments/Results/Discussion
5.1. Primary Metrics

Like Huot et al. in [11], we primarily optimize for AUC
PR (area under the precision-recall curve). The AUC PR
calculates the precision and recall for different classification
thresholds. It plots these (precision, recall) points in a curve
using interpolation techniques, and then calculates the area
under the curve. AUC PR ranges between 0 and 1, with 1
indicating a perfect classifier.

AUC PR is particularly useful when the dataset contains
class imbalance with positive examples appearing less of-
ten. This is because 1) AUC PR provides a more informa-
tive picture of model performance by considering different
classification thresholds, and 2) AUC PR optimizes for pre-
cision and recall, which only consider positive predictions.
The Next Day Wildfire Spread dataset contains significant
class imbalance, with around 1% of the total number of pix-
els in the fire masks containing a fire. Hence, AUC PR is a
suitable metric for our task.

Along with AUC PR, we also calculate the F1 Score,
precision, and recall for a threshold of 0.5.

5.2. Baseline Results

The authors of the dataset [11], Huot et al., include re-
sults from a baseline convolutional auto encoder, random
forest classifier, and logistic regression model. We copy
their baseline results into table[Il Their results show that the
convolutional auto encoder performs better than the more
traditional machine learning methods (random forest classi-
fiers and logistic regression) under the AUC PR and preci-
sion metrics.

Baseline Model AUC PR | Precision | Recall
CAE 28.4 33.6 43.1
Random Forest 22.5 26.3 46.9
Logistic Regression 19.8 325 353

Table 1: Huot et al. baseline results

The authors also include a feature analysis via an ab-
lation study in which they remove one of the features at
a time, retrain the models, and observe how performance
changes. The authors observe similar performance among
all of these ablations except when the fire mask feature is
removed, which causes a sharp drop in performance from
the baselines. With this result, the authors also experiment
with only including one feature at a time along with the fire
mask. They observe that the ‘elevation’ and ‘vegetation in-
dex’ features perform best, achieving 27.0 and 28.2 AUC
respectively. The authors provide no feature analysis be-
yond these dimensional ablation studies.
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Figure 1: Dataset examples broken up into feature maps

5.3. Experiments
5.3.1 Model Architecture

U-Net: We follow the standard U-Net architecture fairly
closely. Our U-Net consists of three encoder blocks, a bot-
tleneck block, and three decoder blocks. With the input be-
ing 12x64x64, the encoder and bottleneck blocks each halve
the height and width and double the number of channels
(beginning with 32 channels). The decoder blocks follow a
reverse process, doubling the height and width and halving
the number of channels. Each block contains two convolu-
tional layers (kernel=3, padding=1) along with batch norm,
ReLU, and dropout layers (p=0.3). Each encoder block
is followed by a 2x2 max pool layer, and before each de-
coder block, there is a 2x2 up-convolution layer. Our model
also uses skip connections between corresponding encoder-
decoder layers.

SegFormer: We implement the the MiT-b0 and MiT-bl
SegFormer model variants available on HuggingFace [9]
[22]]. The MiT-b0 and MiT-b1l models have 3.7M and 14.0M
parameters, respectively. The added complexity in the MiT-
bl model is due to larger hidden layer sizes: [32, 64, 160,
256] versus [64, 128, 320, 512].

5.3.2 Hyperparameters

* We use an approximately 80/10/10 train, validation,
test split of the 18445 data points.

* Batch sizes of 4-16 are standard for image segmen-
tation tasks of our dataset size, with larger batch sizes
preferred. We use a batch size of 16, as we encountered
no issues with fitting the larger batches in memory.

* We use the AdamW optimizer. This is a variant of
Adam that decouples weight decay from the gradient
update, leading to better generalization. The AdamW

optimizer is standard for transformers and many com-
mon image segmentation architectures (e.g., U-Net).

* To determine the optimal loss function and weight de-
cay, we employ a grid search, the results of which
are in Figure 2] The optimal found (learning rate,
weight decay) pairs are (1e-02, 1e-05), (1e-03, 1e-05),
and (1e-04, 1e-03) for the U-Net, SegFormer-B0, and
SegFormer-B1 architectures, respectively.

* During training, we use a weighted cross-entropy loss
function, a learning rate scheduler (reduce on plateau),
and early stopping after five epochs of no improvement
in the validation loss.

e For each of the models, we determine the confi-
dence threshold for pixel classification that yields
the best F1 score on the validation set. We do
this using the function precision_recall_curve
from sklearn.metrics, which calculates the pre-
cision and recall for various thresholds. The optimal
thresholds found for the U-Net, SegFormer-B0, and
SegFormer-B1 models are 0.97, 0.26, 0.10, respec-

tively.
5.4. Results
Model | AUC PR | F1 Score | Precision | Recall
U-Net 19.39 26.56 23.47 30.58
SFBO 17.72 25.84 22.71 29.98
SFB1 17.91 27.24 24.21 31.12

Table 2: Model performance

Our best model results on the test set after the hyper-
parameter search are in Table 2] The U-Net architecture
achieved the best AUC PR, performing slightly better than
the SegFormer models which had roughly similar perfor-
mance. The U-Net AUC PR is slightly worse than than the
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Figure 2: Learning rate and weight decay grid search results

Logistic Regression baseline model, and significantly worse
than the best baseline model (the CAE). The F1 score, preci-
sion, and recall are relatively the same for all three models.

Figure 3] contains the training and validation loss curves
for the model training. After the first epoch, the validation
accuracy fails to improve significantly for all three mod-
els, leading to early stopping within ten epochs. For all
three models, training loss continued to decrease slightly
over time, while validation loss either roughly stabilized
or got worse as in the case of the U-Net. This suggests
that the models struggle to generalize and may overfit to
the training set without early stopping. For the U-Net and
SegFormer-B0 models, the training loss didn’t decrease sig-
nificantly from the starting loss, which suggests that they
lack the necessary expressivity and feature extraction capa-
bilities for the task. The SegFormer-B1 had a larger drop in
training loss in the first epoch, and its results on the test are
also slightly better than that of the SegFormer-BO model,
which suggests that in this case having a larger transformer
model was useful.

The difficulty of the task is augmented by the extreme
class imbalance. As previously mentioned, only around 1%
of the total pixels contain a fire. The SegFormer models’
low optimal threshold values suggest that they are highly
influenced by the negative examples and have low confi-
dence in whether a pixel contains a fire. To help address
this, we experiment with different class weights for the loss
function, the results of which are in Table 8] The U-Net
model achieved the highest AUC PR with weights inversely
proportional to the class sizes. The SegFormer-BO and
SegFormer-B1 performed the best with class weight distri-
butions of 0.25/0.75 and 0.5/0.5, respectively.

The relatively low results of the models overall raise
into question the usefulness of the twelve input features
in predicting the next day fire masks. The authors of the
dataset [11]] also mention this, saying that the previous day

(c) SegFormer-B1
Model | Inv class size | 0.1/0.9 | 0.25/0.75 | 0.5/0.5
U-Net 17.59 15.14 17.13 12.77
SFBO 10.26 13.33 14.44 13.17
SFB1 8.33 10.52 11.43 12.34

Table 3: AUC PR for the models with different loss function
weights

fire mask was the only particularly useful feature out of the
twelve for the segmentation task in their experiments.

5.5. Feature Analysis/Qualitative Results

In this section, we will discuss some gradient based fea-
ture analysis (SmoothGrad and Grad-CAM) of our best
trained models.

We first analyze the UNet model, whose feature analy-
sis can be found in figure E[ In this model, we observe that
the model is very imprecise: the predicted fire map rarely
coincides with the actual fire mask, instead aligning closely
with the input features of vegetation index, drought severity,
and elevation. In the example provided, we observe that the
area of predicted fire aligns with the areas with low vegeta-
tion and low drought, as well as low elevation. This likely
corresponds to a lake, or something of the sort. We also
observe that both the Smoothgrad saliency maps and the
Grad-CAM from the final convolutional layer of the UNet
closely match the spatial location of those features and the
predicted firemap. This suggests that the model is learning
primarily from the finegrained local features of the input
image, disregarding the input from the down-to-upsampling
path of the UNet (which encodes more global, semantic in-
formation than finegrained pixel-level information). This
is qualitatively true even when the model performs fairly
well, predicting fire in roughly the same locations as the ac-
tual firemaps (as in figure [5). We also observe that most
of the features have roughly the same saliency maps, sug-
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Figure 4: UNet Example 1: (a) Input features. (b) Smoothgrad saliency map. (c) Grad-CAM heatmap. (d) Next-day fire

mask prediction vs. ground truth.

gesting that the model does not differentiate between the
channels, instead favoring spatial information. We also, in-
terestingly, see little to no influence from the previous day’s
fire map, which the authors of the dataset identify as the sin-
gle most important feature which carried the most signal for
their experiments. This might explain why our model pro-
vided quantitatively worse results than the baseline models
provided by Huot et al [11].

We now analyze the SegFormerBO model, whose fea-
ture analysis can be found in figure [6] Qualitatively, the re-

sults of this model are far less cleanly interpretable than the
UNet architecture, however there are still some similarities
between the models. In the provided example, the saliency
maps suggest that model attended to a strip on the left side
of the image corresponding to drastically lower vegetation
and higher elevation. This suggests that the model attended
more to interesting spatial features of the image rather than
specific features. However, this model differs in the fact that
the model prediction seems largely unrelated to the features
that it attended to, instead predicting a large blob of fire in
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the lower right hand corner. Qualitatively, this model would
heavily overpredict fires, producing huge blobs of fire, usu-
ally centered on the lower left hand side of the screen. In
the second example in figure[7] we observe similarly that at-
tention is focused on the upper left hand corner, where there
is a significant drop in vegetation and lower elevation, spa-
tially significant features. The SegFormer model, similar to
UNet, also does not appear to attend to the fire mask of the
current day.

We also observe that the SegFormer model attends to far
more of the image than the very localized UNet. This re-
flects the fact that the SegFormer uses a Vision Transformer
architecture which is able to attend to all patches in the im-
age, instead of just the local field around the patch, as in the
case of the CNN based UNet. This global reach means that
the saliency maps for the SegFormer are significantly more
noisy than for UNet.

We omit analysis for the larger SegFormer model be-
cause it is qualitatively similar to the smaller model.

6. Conclusion/Future Work

In this paper, we applied UNet and SegFormer models
to the task of wildfire spread prediction. Our experiments
revealed that both of these models struggled to outperform
even simplistic baseline models provided by the dataset au-
thors, suggesting that these architectures may have diffi-

culty learning from the provided feature set.

Our feature analysis using two gradient based methods
— Smoothgrad and Grad-CAM - showed that both models
largely ignored a feature that had strong predictive power
for the dataset authors, the fire mask. Instead the models
focused on spatial features such as elevation, vegetation in-
dex, and drought severity, often producing spatially biased
predictions. The best model provided by the dataset authors
[L1]] specifically discarded feature level information from
residual connections in their convolutional auto encoder,
forcing the model to make predictions from the higher level
semantic features learned during encoding. This suggests a
future direction for work on this task: it would be interest-
ing to experiment with methods to reduce dependence on
finegrained spatial features and perform feature analysis on
those new architectures. Another future direction of work
would be in incorporating more temporal information in the
form of previous days’ fire masks which would show the
historical spread of the fire. Since the current day’s mask
was a strong feature for the dataset authors, we think this
would yield stronger results. Also, one could incorporate
domain specific physical knowledge like physics based fire
spread models into deep learning models, which might yield
more interpretable results. Alternatively, scaling our exist-
ing approaches to have larger, deeper architectures might
yield better results, as the dataset authors’ models are larger
than ours.



Overall, this work highlights the difficulty of training
models for complicated real world tasks, such as wildfire
spread prediction. The data may not carry enough signal to
accurately predict wildfire spread, causing difficulty learn-
ing accurate computer vision models.
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